
V8 Mobile SDK
For Windows 10

Rev. 1.0
March 2019

© 2019 REALTRACE

Date Revision Changes Authors

March, 2nd, 2019 1.0 Initial revision HYPERTIDE SAS

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �1

TABLE OF CONTENTS

I. INTRODUCTION TO THE V8M SDK	 3
II. PROJECT SETUP	 4
III. USING THE FRAMEWORK	 8
IV. DEMO APP	 14
V. SDK API REFERENCE	 15

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �2

I. INTRODUCTION TO THE V8M SDK

This document is the developer’s documentation related to the V8 Mobile Reader Software
Development Kit (SDK) for Windows 10.

The purpose of this SDK is to allow developers to create apps that can interface with the V8 readers
and perform the following operations :

• Connect to and disconnect from the reader over Bluetooth
• Start a scan operation
• Receive scan data
• Receive content from the reader’s memory
• Read the information stored in chip memory blocks
• Write chip memory block

The SDK itself is distributed as :
- A .NET framework class library that developers can reference in Windows Desktop (WPF)

applications (located in the DesktopV8BTSDK.zip archive) ;
- A .NET core class library that Universal Windows Platform applications (UWP) can reference

(located in the UWV8BTSDK.zip archive) ;
- A Windows Runtime Component (WinRT) that managed and unmanaged Win32 applications can

reference (located in the WinRTV8BTSDK.zip archive.)

The choice of the version of the SDK to use depends on the language and platform the final
application is targeting, but it is important to note that since the SDK is using the Windows 10 API to
access Bluetooth Low Energy (Bluetooth 4) devices, it is managed code. 

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �3

II. PROJECT SETUP
To include and start making use of the SDK, it should be added to the Visual Studio project’s
references.
The version of the SDK to reference depends of the platform the final app is targeting.

A. Desktop Windows (WPF) app

Right-click on the « References » section of the WPF project in the Visual Studio solution. A
dialog box allows to select which files to reference. Click on the « Browse » button and add
the following files :

DesktopV8BTSDK.dll is the SDK itself and can be located anywhere, typically where the
distribution archive has been uncompressed.

The other included files are also required. DesktopV8BTSDK.pdb is useful to debug the
referencing app, and could be included in the final package to obtain more insights and
named symbols in case of crash.

Windows.winmd and System.Runtime.WindowsRuntime.dll/.xml are required by
the SDK to access Windows 10 Bluetooth API from a .NET framework application. Although
those files are included in the SDK distribution archive, they should also reside in the following
locations :

- Windows.winmd should be located in : C:\Program Files (x86)\Windows
Kits\10\UnionMetadata\10.0.17134.0 (the last folder may vary depending on the
release of Windows the computer is running.)

- System.Runtime.WindowsRuntime.dll can be found in : C:\Program Files
(x86)\Reference Assemblies\Microsoft\Framework\.NETCore\v4.5

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �4

When done the project should show (at least) the following references :

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �5

B. Universal Windows (UWP) app

Unlike with WPF apps, the class library is the only reference needed to use the SDK in UWP
apps. Add UWV8BTSDK.dll to the project references by opening the Add References…
dialog in the project’s « References » section contextual menu.

The minimum set of references should include the following items :

It should be noted that it is also possible to reference the WinRT component by referencing
the V8BT.winmd meta-data file. It is however not recommended in terms of optimization
(size, assembly, simplicity) and speed.

One very important step for any UWP app is to declare the Bluetooth capability in the app
manifest. Open the « Properties » section of the project and click on the « Package
Manifest… » button. Once open, click on the « Capabilities » tab of the manifest sheet
and check « Bluetooth » :

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �6

C. Windows Runtime (WinRT)

The SDK is also provided as a WinRT component to be used in various languages (C++, CX,
…) in Win32 apps.

This component is the V8BT.winmd file.

D. Reader Micro App

To support reading and writing RFID tags’ internal memory, the reader should be updated with
a specific micro code. The SDK does this automatically when it connects to a reader and
detects that it does not have the correct micro code version.

For the SDK to update the reader, the micro app data should be available to the SDK.
Therefore, it is necessary to include the v8m.rt8 file in the final app distribution.

The v8m.rt8 file has a size of 416 bytes and the following checksums :

SHA1 :	 7e2e345c5d2b10cb03e89f25bce510e73434ab54

MD5 : 	 540eb6a6c32edce6a2925d11e0dfd1a8

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �7

III. USING THE FRAMEWORK
A. GENERAL CONCEPT

All exchanges with the Framework, and subsequently with the reader, are done through the
ReaderInterface class.

The ReaderInterface class can’t be instantiated and all calls are made through its
singleton (unique instance of the class) ReaderInterface.reader in the V8BT
namespace. This singleton is created and initialized when the application starts.

B. LIFECYCLE

The lifecycle consists in three different stages :

• Phasing from disconnected to connected
• Executing read and write operations
• Reverting back to disconnected

Each phase is achieved by calling the relevant methods of the ReaderInterface.reader
singleton and asynchronously waiting for the result through the current ReaderInterface’s
callbacks.

It is important to note that all operations are done asynchronously, meaning that :

• ReaderInterface’s methods never block the current execution flow (ie, return
immediately.)

• ReaderInterface’s methods never provide the caller with any result or answer directly.
One of the call-related ReaderInterfaceDelegate interface method will be called
back by the ReaderInterface later, with the result of the operation.

• Caller should never block its main thread (which is also the UI thread) waiting for its last call
result.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �8

Class

Implementing

V8BT.ReaderInte
rfaceDelegate

ReaderInterface
.reader

Singleton

1. Sets the callbacks to itself

2. Calls connectToReader()

3. Interface is called back with either
connected() or connectionError()

C. CONNECTING TO THE READER

To connect to a reader, the caller must first set the ReaderInterface’s callbacks to any of
its own classes implementing the ReaderInterfaceDelegate interface.

Failure to do so will result in the caller never get the results of its calls.

Step 1 & 2 :
using V8BT;

…

 p u b l i c s e a l e d p a r t i a l c l a s s M a i n P a g e : P a g e ,
ReaderInterfaceDelegate {

 …

 public MainPage() {

 this.InitializeComponent();

 …

 ReaderInterface.reader.Callbacks = this;

 ReaderInterface.reader.connectToReader();

 }

Step 3, 4 & 5 :
p u b l i c s e a l e d p a r t i a l c l a s s M a i n P a g e : P a g e ,
ReaderInterfaceDelegate {

…

 void ReaderInterfaceDelegate.connected() {

 // Reader is connected and is ready to perform

 // scan, read and write operations.

 }

 void ReaderInterfaceDelegate.connecting(DeviceInformation
device) {

 // We’re currently trying to connect to the

 // reader identified in the device parameter.

 }

 void ReaderInterfaceDelegate.connectionError(ConnectionError
error) {

 // Connection failed, warn the user.

 }

}

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �9

IMPORTANT : Calls made by the ReaderInterface to the callbacks might not be on the
UI thread. Most of the time, those calls are made from a background thread the SDK uses to
handle Bluetooth operations, in order not to affect the application’s main thread, as the main
thread should remain as light as possible to manage the UI.

If it is needed to interact with the UI from the ReaderInterface’s callbacks, then tasks
should be submitted to the UI Dispatcher with calls like Dispatcher.RunAsync() in UWP
apps or Application.Current.Dispatcher.InvokeAsync() in WPF apps.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �10

D. READ OPERATIONS

There are three kind of read operations :

• Scans initiated by the App
• Scans initiated by the user from the reader itself
• Scans transmitted by the reader when dumping its memory

These events can only happen when the ReaderInterface is in the connected state.

1. Initiate a scan from the App

This is done by calling the scan() method of the ReaderInterface. As every other
ReaderInterface methods, scan() will not immediately return any result or block the
caller while waiting for the user to make an actual scan.

Upon successful scan, the scan(ScanResult, boolean) method of the current
ReaderInterface’s callbacks will be called.

The first parameter is a ScanResult object that may contain the actual data read by the
reader.

Second parameter is a boolean :
- If true : this is the initial scan, other data may come later (for example data read from the

chip memory) ;
- If false : this is the last call for this scan, the ScanResult object contains everything the

reader has been able to read.

If the scan operation failed, scanFailure() will be called back instead of
scan(ScanResult, boolean).

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �11

2. Scan initiated from the reader

The callback class should be prepared to have its scan(ScanResult, boolean) method
called at any time, whenever the user initiates a scan by pressing the scan button on the
reader itself.

Some reader models signal the currently connected party that the user pressed the scan
button. In this case, the scanFeedback(boolean) callback might be called before
scan(ScanResult, boolean). The parameter is a boolean indicating if the reader is
starting a scan (true) or stopping to scan (false).

A scanFeedback(boolean) call, especially with its parameter passed with false, does
not indicate that a scan will be made or has failed. This is an indication that the reader’s state
has changed. Typically, app wil l give the user some visual feedback upon
scanFeedback(boolean) calls.

3. Memory dump

The user can operate the reader to dump its memory to the connected party. When the reader
does that, the ReaderInterface callbacks will have its export(ScanResult, int)
method called once for every exported scan.

As with scan(ScanResult, boolean), the app should be prepared to have
export(ScanResult, int) called any time, as this can happen while performing any
operation (such as a network connection or transfert,) when the user manipulates the reader
to dump the memory.

The first parameter passed to export(ScanResult, boolean) is a ScanResult object
that contains only a chip ID, and no additional information, because the reader does not store
scan time or chip memory data when an offline scan has been made by the user (ie, while not
connected to any terminal.)

The second parameter is an int intended for future use, and currently has no meaning.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �12

E. WRITE OPERATIONS

Write operations are used to change chip memory blocks’ content using the reader as a
writing device.

It must be stressed that write operations are far more delicate by nature and thus error prone,
because they take longer than reads and should be performed by the user at a shorter
distance on non-moving targets.

Therefore, it is vital for apps allowing users to perform writes to handle errors and be very
informative to the users. They will encounter more failures.

1. Chip’s ID verification

The ReaderInterface will ensure of the chip identity before performing the actual write
operation.

It is the responsibility of the app to provide the ReaderInterface with this ID in the call.
Typically, this is the ID of the last chip read by the user.

2. Initiate the write operation and handle the result

A write operation consists in a call to the writeContact(string, string,
ContactUpdaterCompletionDelegate, string) method of the ReaderInterface.

The first parameter is a string that contains the « name » part of the contact information to
write in the chip memory. This fields can only contains 25 characters, restricted to:
• Letters: a to z, A to Z
• Digits: 0 to 9
• The following symbols: @ . _ + -
• Spaces

The second parameter is a string that contains the « phone » part of the contact
information. This string is limited to 13 digits if prefixed with a « + » or only 12 digits without the
leading « + ».

The third parameter is a ContactUpdaterCompletionDelegate that with two
parameters :
• A bool indicating if the operation was successfully.
• A ContactStatus holding an error code in case of failure.

The last parameter is a string holding the ID of the chip to write. If the actual chip presented
to the reader has a different ID, the write operation will be canceled.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �13

F. DISCONNECTING

This is a very straightforward operation, consisting in calling disconnectFromReader().

It should be noted that this call always succeed, and no callback will be called.

The app may clear the callbacks field of the ReaderInterface if needed :

ReaderInterface.reader.setCallbacks(null);

IV. DEMO APP
The SDK is distributed with a demonstration app along with this documentation and the Framework’s
bundle itself as a Visual Studio solution consisting of two projects: an UWP and a WPF version of the
same app.

The demo app is a single Page/Window that allows the user to connect to and disconnect from the
reader, receive and initiate scans, handle reader’s memory export and read/write chips’ memory.

The main page or window (MainPage / MainWindow) constructor is in charge of UI initialization
with InitializeComponent(), sets the ReaderInterface.reader singleton’s callbacks to
itself (this), as it implements the ReaderInterfaceDelegate interface.

When the user clicks on the « Connection » button, a call to connectToReader() is made. The
r e s u l t o f t h i s c a l l w i l l b e h a n d l e d b y o n e o f t h e t w o connected() o r
connectionError(ConnectionError). In the first case, the user is then allowed to make
scans, by enabling the « Scan » button, and the UI is modified to reflect the new state (« Connection »
button is changed to « Disconnect » and the status label changed to « Connected ».)

When a scan is received, the scan(ScanResult, boolean) method of the callbacks is called by
the ReaderInterface. The UI is modified to display the scanned information. If waitForContact
is true, this means this is the first batch of data, that includes the chip’s ID. If false, we got all the
scanned data in the ScanResult object, and could update the contact frame’s name and phone
fields with any of those data available in the ScanResult’s Contact field.

If the user pressed the « Write » button, a write operation is started, using the last scanned chip ID. 

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �14

V. SDK API REFERENCE
A. ReaderInterface

1. Methods

a) setCallbacks(ReaderInterfaceDelegate)

Sets the ReaderInterface.reader singleton’s callback to a class implementing
the ReaderInterfaceDelegate interface.

b) connectToReader()

This method shall be called when the application is ready to connect to the reader over
Bluetooth, meeting the following requirements :

- The ReaderInterface.reader singleton’s callbacks have been set ;
- For UWP, the Bluetooth capability has been granted (see section II.B.)

c) scan()

Ask the reader to initiate a scan. This is the equivalent of the user pressing the scan
button of the reader, at the difference that the reader will not emit a beep when a chip
has been successfully scanned.

The following delegate’s methods will be called, depending on the scan operation
results :

- scan(ScanResult, boolean) if a chip has been scanned ;
- scanFailed() if no chip have been scanned before the timeout of 20 seconds, or

if the presented chip was not readable.

d) disconnectFromReader()

Disconnect from the reader. This will not shutdown the Bluetooth module, so it is not
needed to call initializeBluetooth() again before any other connection
attempt.

This call always succeeds. No delegate method will be called back, meaning that the
callbacks of the ReaderInterface.reader singleton can be nullified after calling
disconnectFromReader().

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �15

e) w r i t e C o n t a c t (s t r i n g n a m e , s t r i n g p h o n e ,
ContactUpdaterCompletionDelegate @delegate, string xpdrId)

Write the chip memory with the name and phone data provided in the call parameters.
The user must present the chip whose ID is the same than the one passed in the
xpdrId parameter, or the write will be denied.

Unlike other calls in ReaderInterface, this one won’t call a method of the current
callbacks back to pass the operation result, but instead uses a specific completion
delegate. This is to ensure that the result will not be lost in case of a change of
callbacks in-between.

Parameters :
• name : the name part of the data to write with the following restrictions :

- Maximum size of 25 characters
- Letters : a to z, A to Z
- Digits : 0 to 9
- The following symbols : @ . _ + -
- Spaces

• phone : the phone part of the data to write, a maximum of 12 digits with an optional
leading ‘+’ symbol (not counted in the total digit number.)

• xpdrId : the ID of the chip to write.
• @delegate : a ContactUpdaterCompletionDelegate, taking two

parameters, that will be called to signal the result of the operation :
- 1st parameter : a boolean set to true if the operation was successful or
false in case of the contrary.

- 2nd parameter : a ContactStatus enum value indicating the reason of the
failure.

B. ReaderInterfaceDelegate

1. Methods

a) connecting(DeviceInformation device)

Signals that the ReaderInterface is currently trying to connect to a reader over
Bluetooth. Called after a call to connectToReader().

Parameter :
• device : A DeviceInformation object identifying the Bluetooth device the
ReaderInterface is trying to connect to. 

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �16

b) connectionError(ConnectionError error)

Called when a connection attempt has fai led. Called after a call to
connectToReader().

Parameter :
• error : the cause of the connection failure (see ConnectionError for reference.)

c) connected()

Called when a connection attempt succeeded and a usable reader is ready to receive
scan request and send scan results.

d) disconnected(DisconnectionCause reason)

Signals that the currently connected reader has been disconnected. This can be the
consequence of a call to disconnectFromReader() or an external condition such
as the reader powering off, the reader going out of range, the device’s Bluetooth
hardware module turning off, the reader not answering to keepalives or the connection
state going out of sync.

Parameter :
• reason : the reason why the connection was terminated (see
DisconnectionCause for reference.)

e) scan(ScanResult scan, boolean waitForContact)

Called upon successful scan. This method may be called multiple times, depending on
how much data has been received from the reader. A successful scan garanties at
least one call with the read chip’s ID. Subsequent calls may contains data read from
the chip’s memory.

Parameters :
• scan : a ScanResult object holding scanned data.
• waitForContact : a bolean indicating :

- true : this is not the last batch of data. Generally the ScanResult object
only contains the chip ID in its Scan object ;

- false : this is the last call. All that could have been read is in the scan
parameter.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �17

f) scanFeedback(boolean started)

Some readers (not all) signal when the user pressed the scan button, before the actual
scan happens. Some other readers don’t. When this method is called, it only gives an
indication of the user’s intent to initiate a scan, not that a scan is or will actually be
made.

The principal goal of this call is to make visual or audio feedback to the user. All actual
scan operation results should be managed by scan(ScanResult, boolean),
export(ScanResult, int) and scanFailure().

Parameter :
• started : set to true if the user just pressed the scan button, or false if the

scan attempt has ended (either successfully or not.)

g) export(ScanResult scan, int id)

Called when the reader is dumping its memory to the connected party. This happens
when the user operates its reader to proceed with an export, and thus can result in
this method being called any time.

Parameter :
• scan : the recorded scan being exported. The ScanResult object will only

contains a Scan object and no Contact object.
• id : this int is intended for future use, and can be ignored.

h) scanFailure()

Signals that a scan attempt has failed. This can be the result of a timeout, or the
reader not able to read a chip.

i) version(string version)

Called at some point in the connection process, after a call to connectToReader().
This call reports the detected version of the reader the ReaderInterface is
connecting to. This could not be called at all, If the reader does not support the
ReaderInterface querying for its version.

Parameter :
• version : a string object representing the version of the reader.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �18

C. BluetoothError

This enum is used to report a failure trying to initialize the device’s Bluetooth hardware module.

D. ConnectionError

This enum is used by the connectionError(ConnectionError) callback to report that
a connection attempt failed.

Value Description

unavailable The device does not have Bluetooth capabilities.

Value Description

connectionTimeout The timeout period has expired before the actual
connection could be established.

badAnswer The remote device did not answer correctly. Could
be the consequence of a misbehaving reader or an
unknown device (ie, device is not a reader.)

connectionOutOfState The remote device did not conform to the protocol
or has sent unexpected data.

connectionRefused The remote device refused the connection
attempt.

bluetoothServicesUnavailable The Bluetooth GATT server of the remote device
did not report any service.

bluetoothServicesDiscoveryFailed Discovery of available Bluetooth services offered
by the remote device failed.

bluetoothCharacteristicsUnavailable The Bluetooth GATT server of the remote device
did not report any characteristic for the intended
service.

bluetoothCharacteristicsDiscoveryFailed Discovery of available characteristics for the
designated Bluetooth GATT service failed.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �19

E. DisconnectionCause

This enum is used by the disconnected(DisconnectionCause) callback to signal that
the active connection has been terminated.

This is also called after a call to the disconnectFromReader() method of the
ReaderInterface to confirm the disconnection.

F. ContactStatus

T h i s e n u m i s u s e d b y t h e w r i t e C o n t a c t (s t r i n g , s t r i n g ,
ContactUpdaterCompletionDelegate, string) th i rd parameter, a
ContactUpdaterCompletionDelegate with two parameters : a boolean indicating the
operation was successful if set to true and a ContactStatus holding the reason of the
failure if set to false.

Value Description

bluetoothStatusChanged The connection has been terminated because the device’s Bluetooth
hardware module state has changed.

connectionInterrupted The connection has been terminated because the remote device
disconnected, moved out of range, or after a call to
disconnectFromReader().

communicationError Impossible to send data to the reader.

Value Description

success The chip memory has been written.

contactReadTimeout The operation could not have been conducted within time.

writeOperationFailed The reader reported it was not able to correctly write the chip memory.

wrongChip The ID of the chip presented to the reader does not match the xpdrId
parameter.

protocolError Error while communicating with the reader in order to perform the write
operation.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �20

G. Contact

This object is used to store data read from the memory of a chip.

H. Transponder

This object is used to store a chip ID and its type.

I. Scan

A Scan object encapsulates a Transponder and the Date at which this scan was
performed.

Field Type Description

Phone string A phone number. Maximum of 13 characters : 12 digits with or without a
leading ‘+’ sign.

Name string A contact name. Maximum of 25 characters :

• Letters: a to z, A to Z
• Digits: 0 to 9
• The following symbols: @ . _ + -
• Spaces

Field Type Description

Id string The chip ID.

Type byte Chip type. One of the Types enum.

typename() Method Returns a string representing the type of the chip.

Field Type Description

Xpdr Transponder The scanned chip ID.

date DateTimeOffset The date at which the scan was made.

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �21

J. ScanResult

This object is used to associate a scanned chip with the data read from its memory.

Field Type Description

Scan Scan Holds the chip’s ID (see I.)

Contact Contact Optional that holds the chip memory contents (see G.)

Rev. 1.0 — March 2019 V8M SDK for Windows 10 �22

	INTRODUCTION TO THE V8M SDK
	PROJECT SETUP
	USING THE FRAMEWORK
	DEMO APP
	SDK API REFERENCE

